Function to calculate distance between two coordinates

I'm currently using the function below and it doesn't work properly. According to Google Maps, the distance between these coordinates (from 59.3293371,13.4877472 to 59.3225525,13.4619422) are 2.2 kilometres while the function returns 1.6 kilometres. How can I make this function return the correct distance?

function getDistanceFromLatLonInKm(lat1, lon1, lat2, lon2) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; // Distance in km
  return d;
}

function deg2rad(deg) {
  return deg * (Math.PI/180)
}

jsFiddle: http://jsfiddle.net/edgren/gAHJB/

Answers:

Answer

What you're using is called the haversine formula, which calculates the distance between two points on a sphere as the crow flies. The Google Maps link you provided shows the distance as 2.2 km because it's not a straight line.

Wolphram Alpha is a great resource for doing geographic calculations, and also shows a distance of 1.652 km between these two points.

Drive distance vs. straight line distance (red line mine).

If you're looking for straight-line distance (as the crow files), your function is working correctly. If what you want is driving distance (or biking distance or public transportation distance or walking distance), you'll have to use a mapping API (Google or Bing being the most popular) to get the appropriate route, which will include the distance.

Incidentally, the Google Maps API provides a packaged method for spherical distance, in its google.maps.geometry.spherical namespace (look for computeDistanceBetween). It's probably better than rolling your own (for starters, it uses a more precise value for the Earth's radius).

For the picky among us, when I say "straight-line distance", I'm referring to a "straight line on a sphere", which is actually a curved line (i.e. the great-circle distance), of course.

Answer

Derek's solution worked fine for me, and I've just simply converted it to PHP, hope it helps somebody out there !

function calcCrow($lat1, $lon1, $lat2, $lon2){
        $R = 6371; // km
        $dLat = toRad($lat2-$lat1);
        $dLon = toRad($lon2-$lon1);
        $lat1 = toRad($lat1);
        $lat2 = toRad($lat2);

        $a = sin($dLat/2) * sin($dLat/2) +sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 
        $c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
        $d = $R * $c;
        return $d;
}

// Converts numeric degrees to radians
function toRad($Value) 
{
    return $Value * pi() / 180;
}
Answer

Try this. It is in VB.net and you need to convert it to Javascript. This function accepts parameters in decimal minutes.

    Private Function calculateDistance(ByVal long1 As String, ByVal lat1 As String, ByVal long2 As String, ByVal lat2 As String) As Double
    long1 = Double.Parse(long1)
    lat1 = Double.Parse(lat1)
    long2 = Double.Parse(long2)
    lat2 = Double.Parse(lat2)

    'conversion to radian
    lat1 = (lat1 * 2.0 * Math.PI) / 60.0 / 360.0
    long1 = (long1 * 2.0 * Math.PI) / 60.0 / 360.0
    lat2 = (lat2 * 2.0 * Math.PI) / 60.0 / 360.0
    long2 = (long2 * 2.0 * Math.PI) / 60.0 / 360.0

    ' use to different earth axis length
    Dim a As Double = 6378137.0        ' Earth Major Axis (WGS84)
    Dim b As Double = 6356752.3142     ' Minor Axis
    Dim f As Double = (a - b) / a        ' "Flattening"
    Dim e As Double = 2.0 * f - f * f      ' "Eccentricity"

    Dim beta As Double = (a / Math.Sqrt(1.0 - e * Math.Sin(lat1) * Math.Sin(lat1)))
    Dim cos As Double = Math.Cos(lat1)
    Dim x As Double = beta * cos * Math.Cos(long1)
    Dim y As Double = beta * cos * Math.Sin(long1)
    Dim z As Double = beta * (1 - e) * Math.Sin(lat1)

    beta = (a / Math.Sqrt(1.0 - e * Math.Sin(lat2) * Math.Sin(lat2)))
    cos = Math.Cos(lat2)
    x -= (beta * cos * Math.Cos(long2))
    y -= (beta * cos * Math.Sin(long2))
    z -= (beta * (1 - e) * Math.Sin(lat2))

    Return Math.Sqrt((x * x) + (y * y) + (z * z))
End Function

Edit The converted function in javascript

function calculateDistance(lat1, long1, lat2, long2)
  {    

      //radians
      lat1 = (lat1 * 2.0 * Math.PI) / 60.0 / 360.0;      
      long1 = (long1 * 2.0 * Math.PI) / 60.0 / 360.0;    
      lat2 = (lat2 * 2.0 * Math.PI) / 60.0 / 360.0;   
      long2 = (long2 * 2.0 * Math.PI) / 60.0 / 360.0;       


      // use to different earth axis length    
      var a = 6378137.0;        // Earth Major Axis (WGS84)    
      var b = 6356752.3142;     // Minor Axis    
      var f = (a-b) / a;        // "Flattening"    
      var e = 2.0*f - f*f;      // "Eccentricity"      

      var beta = (a / Math.sqrt( 1.0 - e * Math.sin( lat1 ) * Math.sin( lat1 )));    
      var cos = Math.cos( lat1 );    
      var x = beta * cos * Math.cos( long1 );    
      var y = beta * cos * Math.sin( long1 );    
      var z = beta * ( 1 - e ) * Math.sin( lat1 );      

      beta = ( a / Math.sqrt( 1.0 -  e * Math.sin( lat2 ) * Math.sin( lat2 )));    
      cos = Math.cos( lat2 );   
      x -= (beta * cos * Math.cos( long2 ));    
      y -= (beta * cos * Math.sin( long2 ));    
      z -= (beta * (1 - e) * Math.sin( lat2 ));       

      return (Math.sqrt( (x*x) + (y*y) + (z*z) )/1000);  
    }
Answer

Calculate the Distance between Two Points in javascript

function distance(lat1, lon1, lat2, lon2, unit) {
        var radlat1 = Math.PI * lat1/180
        var radlat2 = Math.PI * lat2/180
        var theta = lon1-lon2
        var radtheta = Math.PI * theta/180
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist)
        dist = dist * 180/Math.PI
        dist = dist * 60 * 1.1515
        if (unit=="K") { dist = dist * 1.609344 }
        if (unit=="N") { dist = dist * 0.8684 }
        return dist
}

For more details refer this: Reference Link

Answer

Using Haversine formula, source of the code:

//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
//:::                                                                         :::
//:::  This routine calculates the distance between two points (given the     :::
//:::  latitude/longitude of those points). It is being used to calculate     :::
//:::  the distance between two locations using GeoDataSource (TM) prodducts  :::
//:::                                                                         :::
//:::  Definitions:                                                           :::
//:::    South latitudes are negative, east longitudes are positive           :::
//:::                                                                         :::
//:::  Passed to function:                                                    :::
//:::    lat1, lon1 = Latitude and Longitude of point 1 (in decimal degrees)  :::
//:::    lat2, lon2 = Latitude and Longitude of point 2 (in decimal degrees)  :::
//:::    unit = the unit you desire for results                               :::
//:::           where: 'M' is statute miles (default)                         :::
//:::                  'K' is kilometers                                      :::
//:::                  'N' is nautical miles                                  :::
//:::                                                                         :::
//:::  Worldwide cities and other features databases with latitude longitude  :::
//:::  are available at https://www.geodatasource.com                         :::
//:::                                                                         :::
//:::  For enquiries, please contact [email protected]                  :::
//:::                                                                         :::
//:::  Official Web site: https://www.geodatasource.com                       :::
//:::                                                                         :::
//:::               GeoDataSource.com (C) All Rights Reserved 2018            :::
//:::                                                                         :::
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

function distance(lat1, lon1, lat2, lon2, unit) {
    if ((lat1 == lat2) && (lon1 == lon2)) {
        return 0;
    }
    else {
        var radlat1 = Math.PI * lat1/180;
        var radlat2 = Math.PI * lat2/180;
        var theta = lon1-lon2;
        var radtheta = Math.PI * theta/180;
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        if (dist > 1) {
            dist = 1;
        }
        dist = Math.acos(dist);
        dist = dist * 180/Math.PI;
        dist = dist * 60 * 1.1515;
        if (unit=="K") { dist = dist * 1.609344 }
        if (unit=="N") { dist = dist * 0.8684 }
        return dist;
    }
}

The sample code is licensed under LGPLv3.

Answer

I have written a similar equation before - tested it and also got 1.6 km.

Your google maps was showing the DRIVING distance.

Your function is calculating as the crow flies (straight line distance).

alert(calcCrow(59.3293371,13.4877472,59.3225525,13.4619422).toFixed(1));



    //This function takes in latitude and longitude of two location and returns the distance between them as the crow flies (in km)
    function calcCrow(lat1, lon1, lat2, lon2) 
    {
      var R = 6371; // km
      var dLat = toRad(lat2-lat1);
      var dLon = toRad(lon2-lon1);
      var lat1 = toRad(lat1);
      var lat2 = toRad(lat2);

      var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
        Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2); 
      var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
      var d = R * c;
      return d;
    }

    // Converts numeric degrees to radians
    function toRad(Value) 
    {
        return Value * Math.PI / 180;
    }
Answer

I have written the function to find distance between two coordinates. It will return distance in meter.

 function findDistance() {
   var R = 6371e3; // R is earth’s radius
   var lat1 = 23.18489670753479; // starting point lat
   var lat2 = 32.726601;         // ending point lat
   var lon1 = 72.62524545192719; // starting point lon
   var lon2 = 74.857025;         // ending point lon
   var lat1radians = toRadians(lat1);
   var lat2radians = toRadians(lat2);

   var latRadians = toRadians(lat2-lat1);
   var lonRadians = toRadians(lon2-lon1);

   var a = Math.sin(latRadians/2) * Math.sin(latRadians/2) +
        Math.cos(lat1radians) * Math.cos(lat2radians) *
        Math.sin(lonRadians/2) * Math.sin(lonRadians/2);
   var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

   var d = R * c;

   console.log(d)
}

function toRadians(val){
    var PI = 3.1415926535;
    return val / 180.0 * PI;
}
Answer

Great-circle distance - From chord length

Here's an elegant solution applying the strategy design pattern; I hope it's readable enough.

TwoPointsDistanceCalculatorStrategy.js:

module.exports = () =>

class TwoPointsDistanceCalculatorStrategy {

    constructor() {}

    calculateDistance({ point1Coordinates, point2Coordinates }) {}
};

GreatCircleTwoPointsDistanceCalculatorStrategy.js:

module.exports = ({ TwoPointsDistanceCalculatorStrategy }) =>

class GreatCircleTwoPointsDistanceCalculatorStrategy extends TwoPointsDistanceCalculatorStrategy {

    constructor() {
        super();
    }

    /**
     * Following the algorithm documented here: 
     * https://en.wikipedia.org/wiki/Great-circle_distance#Computational_formulas
     * 
     * @param {object} inputs
     * @param {array} inputs.point1Coordinates
     * @param {array} inputs.point2Coordinates
     * 
     * @returns {decimal} distance in kelometers
     */
    calculateDistance({ point1Coordinates, point2Coordinates }) {

        const convertDegreesToRadians = require('../convert-degrees-to-radians');
        const EARTH_RADIUS = 6371;   // in kelometers

        const [lat1 = 0, lon1 = 0] = point1Coordinates;
        const [lat2 = 0, lon2 = 0] = point2Coordinates;

        const radianLat1 = convertDegreesToRadians({ degrees: lat1 });
        const radianLon1 = convertDegreesToRadians({ degrees: lon1 });
        const radianLat2 = convertDegreesToRadians({ degrees: lat2 });
        const radianLon2 = convertDegreesToRadians({ degrees: lon2 });

        const centralAngle = _computeCentralAngle({ 
            lat1: radianLat1, lon1: radianLon1, 
            lat2: radianLat2, lon2: radianLon2, 
        });

        const distance = EARTH_RADIUS * centralAngle;

        return distance;
    }
};


/**
 * 
 * @param {object} inputs
 * @param {decimal} inputs.lat1
 * @param {decimal} inputs.lon1
 * @param {decimal} inputs.lat2
 * @param {decimal} inputs.lon2
 * 
 * @returns {decimal} centralAngle
 */
function _computeCentralAngle({ lat1, lon1, lat2, lon2 }) {

    const chordLength = _computeChordLength({ lat1, lon1, lat2, lon2 });
    const centralAngle = 2 * Math.asin(chordLength / 2);

    return centralAngle;
}


/**
 * 
 * @param {object} inputs
 * @param {decimal} inputs.lat1
 * @param {decimal} inputs.lon1
 * @param {decimal} inputs.lat2
 * @param {decimal} inputs.lon2
 * 
 * @returns {decimal} chordLength
 */
function _computeChordLength({ lat1, lon1, lat2, lon2 }) {

    const { sin, cos, pow, sqrt } = Math;

    const ?X = cos(lat2) * cos(lon2) - cos(lat1) * cos(lon1);
    const ?Y = cos(lat2) * sin(lon2) - cos(lat1) * sin(lon1);
    const ?Z = sin(lat2) - sin(lat1);

    const ?XSquare = pow(?X, 2);
    const ?YSquare = pow(?Y, 2);
    const ?ZSquare = pow(?Z, 2);

    const chordLength = sqrt(?XSquare + ?YSquare + ?ZSquare);

    return chordLength;
}

convert-degrees-to-radians.js:

module.exports = function convertDegreesToRadians({ degrees }) {

    return degrees * Math.PI / 180;
};

This's following the Great-circle distance - From chord length, documented here.

Answer

Visit this address. https://www.movable-type.co.uk/scripts/latlong.html You can use this code:

JavaScript:     

const R = 6371e3; // metres
const ?1 = lat1 * Math.PI/180; // ?, ? in radians
const ?2 = lat2 * Math.PI/180;
const ?? = (lat2-lat1) * Math.PI/180;
const ?? = (lon2-lon1) * Math.PI/180;

const a = Math.sin(??/2) * Math.sin(??/2) +
          Math.cos(?1) * Math.cos(?2) *
          Math.sin(??/2) * Math.sin(??/2);
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

const d = R * c; // in metres

Tags

Recent Questions

Top Questions

Home Tags Terms of Service Privacy Policy DMCA Contact Us

©2020 All rights reserved.